
The Google File
System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

15-Jan-19

Presented By: Noshin Nawar Sadat

Google File System (GFS)

 A scalable distributed file system for large distributed data-
intensive applications

 Provides fault tolerance while running on inexpensive
commodity hardware

 Delivers high aggregate performance to a large number of
clients.

 Widely deployed within Google as the storage platform

PAGE 2

Assumptions
 Monitor, detect, tolerate, and recover promptly from

component failures on a routine basis

 Stored files are mostly large (100 MB or larger)

 Large streaming reads and small random reads

 Mostly large, sequential writes that append data to files

 Efficiently handle multiple clients that concurrently append
to the same file

 Atomicity with minimal synchronization overhead is essential.

 High sustained bandwidth is more important than low
latency

PAGE 3

Interface
 Provides a familiar file system interface

 Does not implement a standard API

 File organization

 Hierarchically in directories

 Identified by path-names

 Operations

 create, delete, open, close, read, and write files

 snapshot

 record append

PAGE 4

Architecture

 A GFS cluster consists of

 a single master

 multiple chunkservers

 accessed by multiple clients

 Files divided into fixed-size chunks (64 MB)

 identified by 64 bit chunk handle assigned by the master at the time
of chunk creation

 replicated on multiple chunkservers to ensure reliability (3 replicas,
by default)

PAGE 5

Architecture

PAGE 6

GFS Master

 Maintains all file system metadata in main memory

 capacity of whole system limited by memory

 Periodically communicates with each chunkserver through
HeartBeat messages

 Makes sophisticated chunk placement and replication
decisions using global knowledge

PAGE 7

Chunk Size (64 MB)
 Advantages

 reduces clients’ need to interact with the master

 reduces network overhead by keeping a persistent TCP connection to
the chunkserver over an extended period of time

 reduces the size of the metadata stored on the master

 Disadvantages

 A small file may lead to creation of hotspots

PAGE 8

Metadata
 Three major types of metadata

 the file and chunk namespaces (persistently stored)

 the mapping from files to chunks (persistently stored)

 the locations of each chunk’s replicas (not persistently stored)

 poll chunkservers at startup and monitor Heartbeat messages

 Operation log

 logs of mutations to keep metadata persistently

 stored on the master’s local disk

 replicated on remote machines

 allows to update the master in the event of a master crash

PAGE 9

Consistency Model

 Atomic file namespace mutations

 handled exclusively by the master

 State of a file region after a data mutation depends on

 the type of mutation

 whether it succeeds or fails

 whether there are concurrent mutations

PAGE 10

Consistency Model

consistent - all clients will always see the same data, regardless of
which replicas they read from

defined - after a file data mutation, it is consistent and clients will
see what the mutation writes in its entirety

PAGE 11

Leases and Mutation Orders

PAGE 12

Why Separate Data Flow?

 To fully utilize each machine’s network bandwidth

 data is pushed linearly along a chain of chunkservers rather than
distributed in some other topology

 To avoid network bottlenecks and high-latency links

 each machine forwards the data to the “closest” machine in the
network topology that has not received it

 “distances” can be accurately estimated from IP addresses.

 To minimize latency

 pipelining the data transfer over TCP connections

PAGE 13

Atomic Record Append
 Same control flow as write

 Process

 client pushes the data to all replicas of the last chunk of the file and sends request
to primary

 if primary finds chunk size > 64 MB after appending the record to current chunk

 pads the chunk to the maximum size

 tells secondaries to do the same

 asks client to retry operation on the next chunk

 else

 appends the data to its replica

 tells the secondaries to write the data at the exact offset where it has

 replies success to the client

PAGE 14

Master Operations

Namespace Management and Locking

 Logically represents its namespace as a lookup table
mapping full pathnames to metadata

 Each node in the namespace tree has an associated read-
write lock

 Allows concurrent mutations in the same directory

 each operation acquires a read lock on the directory name and a write
lock on the file name

PAGE 15

Master Operations

Chunk Creation

 Chooses where to place the initially empty replicas

 Considers several factors

 place new replicas on chunkservers with below-average disk space
utilization.

 limit the number of “recent” creations on each chunkserver

 spread replicas of a chunk across racks

PAGE 16

Master Operations

Chunk Re-replication

 Prioritized based on

 how far it is from its replication goal

 live files vs. recently deleted files

 boost the priority of any chunk that is blocking client progress

PAGE 17

Master Operations

Re-balancing Chunk Replicas

 Examines the current replica distribution

 Moves replicas for better disk space and load balancing

 Chooses which existing replica to remove

PAGE 18

Master Operations
Garbage Collection

When a file is deleted by the application

 master logs the deletion immediately

 the file is renamed to a hidden name that includes the deletion timestamp

 master’s regular scan of the file system namespace: removes any hidden files
that existed for more than three days, severing its links to all its chunks

 master’s regular scan of the chunk namespace: identifies orphaned chunks
and erases the metadata for those chunks

 master replies to Heartbeat messages of chunkservers with the identities of
absent chunks

 chunkserver is free to delete its replicas of such chunks

PAGE 19

Master Operations

Stale Replica Detection

 Stale replicas

 when chunkserver fails and misses mutations to the chunk while it is
down

 removed during regular garbage collection

 Chunk version number to distinguish between up-to-date
and stale replicas

 whenever the master grants a new lease on a chunk, it increases the
chunk version number and informs the up-to-date replicas

PAGE 20

Fault Tolerance and Diagnosis

 High availability

 Fast recovery

 Chunk replication

 Master replication

 Data Integrity

 Checksum to detect corrupted data

 Diagnostic Tools

 Extensive and detailed diagnostic logging

PAGE 21

Performance Measurement
 A GFS cluster consisting of

 one master, two master replicas, 16 chunkservers, 16 clients

 Machine configuration

 dual 1.4 GHz PIII processors

 2 GB of memory

 two 80 GB 5400 rpm disks

 100 Mbps full-duplex Ethernet connection to an HP 2524 switch

 Connections

 all 19 GFS server machines are connected to one switch

 all 16 client machines to the other

 two switches are connected with a 1 Gbps link.

PAGE 22

Performance Measurement

PAGE 23

Performance Measurement

PAGE 24

Performance Measurement

PAGE 25

Performance Measurement

PAGE 26

Performance Measurement

PAGE 27

Performance Measurement
Recovery Time

 Killed 1 chunkserver

 15,000 chunks (600GB data)

 limited cloning operations to 40% chunkservers at 6.25 MBps

 restored within 23.2 minutes at replication rate 440MBps

 Killed 2 chunkservers

 16,000 chunks (660 GB data) each

 266 chunks had single replica

 restored to 2x replication in 2 minutes at high priority

PAGE 28

Performance Measurement

PAGE 29

Performance Measurement

PAGE 30

Performance Measurement

PAGE 31

Benefits
 Centralized master server

 simplified design - less complexity, greater flexibility

 well-informed chunk placement and replication decisions

 Fault tolerance

 master state small and fully replicated

 Scalability, high availability

 use of shadow masters

 Tackle processing needs with existing cheap hardware

 High throughput

 separation of control and data flow

 Allows for concurrent appends

PAGE 32

Issues

 Applications have to deal with duplicates in the chunks
(result of record appends)

 Problem delivering aggregate performance to a large number
of clients

 System size limited by master server’s main memory
capacity

 File sizes < 64MB

PAGE 33

Worked fine 15 years ago.

What about now?

PAGE 34

