
The Google File
System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

15-Jan-19

Presented By: Noshin Nawar Sadat

Google File System (GFS)

 A scalable distributed file system for large distributed data-
intensive applications

 Provides fault tolerance while running on inexpensive
commodity hardware

 Delivers high aggregate performance to a large number of
clients.

 Widely deployed within Google as the storage platform

PAGE 2

Assumptions
 Monitor, detect, tolerate, and recover promptly from

component failures on a routine basis

 Stored files are mostly large (100 MB or larger)

 Large streaming reads and small random reads

 Mostly large, sequential writes that append data to files

 Efficiently handle multiple clients that concurrently append
to the same file

 Atomicity with minimal synchronization overhead is essential.

 High sustained bandwidth is more important than low
latency

PAGE 3

Interface
 Provides a familiar file system interface

 Does not implement a standard API

 File organization

 Hierarchically in directories

 Identified by path-names

 Operations

 create, delete, open, close, read, and write files

 snapshot

 record append

PAGE 4

Architecture

 A GFS cluster consists of

 a single master

 multiple chunkservers

 accessed by multiple clients

 Files divided into fixed-size chunks (64 MB)

 identified by 64 bit chunk handle assigned by the master at the time
of chunk creation

 replicated on multiple chunkservers to ensure reliability (3 replicas,
by default)

PAGE 5

Architecture

PAGE 6

GFS Master

 Maintains all file system metadata in main memory

 capacity of whole system limited by memory

 Periodically communicates with each chunkserver through
HeartBeat messages

 Makes sophisticated chunk placement and replication
decisions using global knowledge

PAGE 7

Chunk Size (64 MB)
 Advantages

 reduces clients’ need to interact with the master

 reduces network overhead by keeping a persistent TCP connection to
the chunkserver over an extended period of time

 reduces the size of the metadata stored on the master

 Disadvantages

 A small file may lead to creation of hotspots

PAGE 8

Metadata
 Three major types of metadata

 the file and chunk namespaces (persistently stored)

 the mapping from files to chunks (persistently stored)

 the locations of each chunk’s replicas (not persistently stored)

 poll chunkservers at startup and monitor Heartbeat messages

 Operation log

 logs of mutations to keep metadata persistently

 stored on the master’s local disk

 replicated on remote machines

 allows to update the master in the event of a master crash

PAGE 9

Consistency Model

 Atomic file namespace mutations

 handled exclusively by the master

 State of a file region after a data mutation depends on

 the type of mutation

 whether it succeeds or fails

 whether there are concurrent mutations

PAGE 10

Consistency Model

consistent - all clients will always see the same data, regardless of
which replicas they read from

defined - after a file data mutation, it is consistent and clients will
see what the mutation writes in its entirety

PAGE 11

Leases and Mutation Orders

PAGE 12

Why Separate Data Flow?

 To fully utilize each machine’s network bandwidth

 data is pushed linearly along a chain of chunkservers rather than
distributed in some other topology

 To avoid network bottlenecks and high-latency links

 each machine forwards the data to the “closest” machine in the
network topology that has not received it

 “distances” can be accurately estimated from IP addresses.

 To minimize latency

 pipelining the data transfer over TCP connections

PAGE 13

Atomic Record Append
 Same control flow as write

 Process

 client pushes the data to all replicas of the last chunk of the file and sends request
to primary

 if primary finds chunk size > 64 MB after appending the record to current chunk

 pads the chunk to the maximum size

 tells secondaries to do the same

 asks client to retry operation on the next chunk

 else

 appends the data to its replica

 tells the secondaries to write the data at the exact offset where it has

 replies success to the client

PAGE 14

Master Operations

Namespace Management and Locking

 Logically represents its namespace as a lookup table
mapping full pathnames to metadata

 Each node in the namespace tree has an associated read-
write lock

 Allows concurrent mutations in the same directory

 each operation acquires a read lock on the directory name and a write
lock on the file name

PAGE 15

Master Operations

Chunk Creation

 Chooses where to place the initially empty replicas

 Considers several factors

 place new replicas on chunkservers with below-average disk space
utilization.

 limit the number of “recent” creations on each chunkserver

 spread replicas of a chunk across racks

PAGE 16

Master Operations

Chunk Re-replication

 Prioritized based on

 how far it is from its replication goal

 live files vs. recently deleted files

 boost the priority of any chunk that is blocking client progress

PAGE 17

Master Operations

Re-balancing Chunk Replicas

 Examines the current replica distribution

 Moves replicas for better disk space and load balancing

 Chooses which existing replica to remove

PAGE 18

Master Operations
Garbage Collection

When a file is deleted by the application

 master logs the deletion immediately

 the file is renamed to a hidden name that includes the deletion timestamp

 master’s regular scan of the file system namespace: removes any hidden files
that existed for more than three days, severing its links to all its chunks

 master’s regular scan of the chunk namespace: identifies orphaned chunks
and erases the metadata for those chunks

 master replies to Heartbeat messages of chunkservers with the identities of
absent chunks

 chunkserver is free to delete its replicas of such chunks

PAGE 19

Master Operations

Stale Replica Detection

 Stale replicas

 when chunkserver fails and misses mutations to the chunk while it is
down

 removed during regular garbage collection

 Chunk version number to distinguish between up-to-date
and stale replicas

 whenever the master grants a new lease on a chunk, it increases the
chunk version number and informs the up-to-date replicas

PAGE 20

Fault Tolerance and Diagnosis

 High availability

 Fast recovery

 Chunk replication

 Master replication

 Data Integrity

 Checksum to detect corrupted data

 Diagnostic Tools

 Extensive and detailed diagnostic logging

PAGE 21

Performance Measurement
 A GFS cluster consisting of

 one master, two master replicas, 16 chunkservers, 16 clients

 Machine configuration

 dual 1.4 GHz PIII processors

 2 GB of memory

 two 80 GB 5400 rpm disks

 100 Mbps full-duplex Ethernet connection to an HP 2524 switch

 Connections

 all 19 GFS server machines are connected to one switch

 all 16 client machines to the other

 two switches are connected with a 1 Gbps link.

PAGE 22

Performance Measurement

PAGE 23

Performance Measurement

PAGE 24

Performance Measurement

PAGE 25

Performance Measurement

PAGE 26

Performance Measurement

PAGE 27

Performance Measurement
Recovery Time

 Killed 1 chunkserver

 15,000 chunks (600GB data)

 limited cloning operations to 40% chunkservers at 6.25 MBps

 restored within 23.2 minutes at replication rate 440MBps

 Killed 2 chunkservers

 16,000 chunks (660 GB data) each

 266 chunks had single replica

 restored to 2x replication in 2 minutes at high priority

PAGE 28

Performance Measurement

PAGE 29

Performance Measurement

PAGE 30

Performance Measurement

PAGE 31

Benefits
 Centralized master server

 simplified design - less complexity, greater flexibility

 well-informed chunk placement and replication decisions

 Fault tolerance

 master state small and fully replicated

 Scalability, high availability

 use of shadow masters

 Tackle processing needs with existing cheap hardware

 High throughput

 separation of control and data flow

 Allows for concurrent appends

PAGE 32

Issues

 Applications have to deal with duplicates in the chunks
(result of record appends)

 Problem delivering aggregate performance to a large number
of clients

 System size limited by master server’s main memory
capacity

 File sizes < 64MB

PAGE 33

Worked fine 15 years ago.

What about now?

PAGE 34

