The Google File
system

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Presented By: Noshin Nawar Sadat

15-Jan-19

) WATERLOO

Google File System (GFS)

= A scalable distributed file system for large distributed data-
intensive applications

= Provides fault tolerance while running on inexpensive
commodity hardware

= Delivers high aggregate performance to a large number of
clients.

= Widely deployed within Google as the storage platform

UNIVERSITY OF

AGE 2 % WATERLOO

Assumptions

= Monitor, detect, tolerate, and recover promptly from
component failures on a routine basis

= Stored files are mostly large (100 MB or larger)
= Large streaming reads and small random reads
= Mostly large, sequential writes that append data to files

= Efficiently handle multiple clients that concurrently append
to the same file

= Atomicity with minimal synchronization overhead is essential.

= High sustained bandwidth is more important than low
latency

AGE 3 % WATERLOO

Interface

= Provides a familiar file system interface
= Does not implement a standard API
= File organization
= Hierarchically in directories
= Identified by path-names
= Operations
= create, delete, open, close, read, and write files
= snapshot

= record append

nGE 4 % WATERLOO

Architecture

= A GFS cluster consists of
= a single master
= multiple chunkservers

= accessed by multiple clients

= Files divided into fixed-size chunks (64 MB)

= identified by 64 bit chunk handle assigned by the master at the time
of chunk creation

= replicated on multiple chunkservers to ensure reliability (3 replicas,
by default)

AGE 5 % WATERLOO

Architecture

Application . . o :
PP (file name. chunk index) | GFS master Fn /foo/bar

- -y - L - § o E '} L
GFS client | File namespace ' chunk 2ef0

(chunk handle, |
chunk locations) i 4
3 egend:

z\‘\, —

[' i PR
Instructions to chunkserver — Control messages

Data messages

Chunkserver state

(chunk handle, byte range) | ¥ 1
GFS chunkserver GFS chunkserver
chunk data ; 5 : |
Linux file system Linux file system

s gl

aGE 6 %?’ WATERLOO

= Maintains all file system metadata in main memory

= capacity of whole system limited by memory

= Periodically communicates with each chunkserver through
HeartBeat messages

= Makes sophisticated chunk placement and replication
decisions using global knowledge

nGE 7 % WATERLOO

Chunk Size (64 MB)

= Advantages
= reduces clients’ need to interact with the master

= reduces network overhead by keeping a persistent TCP connection to
the chunkserver over an extended period of time

= reduces the size of the metadata stored on the master

= Disadvantages

= A small file may lead to creation of hotspots

aGE § % WATERLOO

Metadata

= Three major types of metadata
= the file and chunk namespaces (persistently stored)
= the mapping from files to chunks (persistently stored)
= the locations of each chunk’s replicas (not persistently stored)
= poll chunkservers at startup and monitor Heartbeat messages
= Operation log
= logs of mutations to keep metadata persistently
= stored on the master’s local disk
= replicated on remote machines

= allows to update the master in the event of a master crash

AGE © % WATERLOO

Gonsistency Model

= Atomic file namespace mutations
= handled exclusively by the master

= State of a file region after a data mutation depends on
= the type of mutation
= whether it succeeds or fails

= whether there are concurrent mutations

AGE 16 % WATERLOO

Gonsistency Model

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent imconsistent
successes but undefined
Failure inconsistent

Table 1: File Region State After Mutation

consistent - all clients will always see the same data, regardless of
which replicas they read from

defined - after a file data mutation, it is consistent and clients will
see what the mutation writes in its entirety

AGE 11 % WATERLOO

Leases and Mutation Orders

4 step 1 %
.| Client | | Master

la

Secondary |=
Replica A

l

Primary
Replica =

l Legend:
— (Control

Secondary |— — .
ReplicaB |=

[

AGE 15 % WATERLOO

Why Separate Data Flow?

= To fully utilize each machine’s network bandwidth

= data is pushed linearly along a chain of chunkservers rather than
distributed in some other topology

= To avoid network bottlenecks and high-latency links

= each machine forwards the data to the “closest” machine in the
network topology that has not received it

= “distances” can be accurately estimated from IP addresses.
= To minimize latency

= pipelining the data transfer over TCP connections

AGE 13 % WATERLOO

Atomic Record Append

= Same control flow as write

= Process

= client pushes the data to all replicas of the last chunk of the file and sends request
to primary

= if primary finds chunk size > 64 MB after appending the record to current chunk
= pads the chunk to the maximum size
= tells secondaries to do the same
= asks client to retry operation on the next chunk
= else
= appends the data to its replica
= tells the secondaries to write the data at the exact offset where it has

= replies success to the client

AGE 14 % WATERLOO

Master Operations

Namespace Management and Locking

= Logically represents its namespace as a lookup table
mapping full pathnames to metadata

= Each node in the namespace tree has an associated read-
write lock

= Allows concurrent mutations in the same directory

= each operation acquires a read lock on the directory name and a write
lock on the file name

AGE 15 % WATERLOO

Master Operations

Chunk Creation
= Chooses where to place the initially empty replicas

= Considers several factors

= place new replicas on chunkservers with below-average disk space
utilization.

»]imit the number of “recent” creations on each chunkserver

= spread replicas of a chunk across racks

AGE 16 % WATERLOO

Master Operations

Chunk Re-replication

= Prioritized based on
= how far it is from its replication goal
= live files vs. recently deleted files

= boost the priority of any chunk that is blocking client progress

AGE 17 % WATERLOO

Master Operations

Re-balancing Chunk Replicas
= Examines the current replica distribution
= Moves replicas for better disk space and load balancing

= Chooses which existing replica to remove

AGE 18 % WATERLOO

Master Operations

Garbage Collection

When a file is deleted by the application

= master logs the deletion immediately

= the file is renamed to a hidden name that includes the deletion timestamp

= master’s regular scan of the file system namespace: removes any hidden files
that existed for more than three days, severing its links to all its chunks

= master’s regular scan of the chunk namespace: identifies orphaned chunks
and erases the metadata for those chunks

= master replies to Heartbeat messages of chunkservers with the identities of
absent chunks

= chunkserver is free to delete its replicas of such chunks

AGE 16 % WATERLOO

Master Operations

Stale Replica Detection

= Stale replicas

= when chunkserver fails and misses mutations to the chunk while it is
down

= removed during regular garbage collection

= Chunk version number to distinguish between up-to-date
and stale replicas

= whenever the master grants a new lease on a chunk, it increases the
chunk version number and informs the up-to-date replicas

AGE 26 % WATERLOO

Fault Tolerance and Diagnosis

= High availability

= Fast recovery

= Chunk replication

= Master replication
= Data Integrity

= Checksum to detect corrupted data
= Diagnostic Tools

= Extensive and detailed diagnostic logging

AGE 21 % WATERLOO

Periormance Measurement

= A GFS cluster consisting of

= one master, two master replicas, 16 chunkservers, 16 clients
= Machine configuration

= dual 1.4 GHz PIII processors

= 2 GB of memory

= two 80 GB 5400 rpm disks

= 100 Mbps full-duplex Ethernet connection to an HP 2524 switch
= Connections

= all 19 GFS server machines are connected to one switch

= all 16 client machines to the other

= two switches are connected with a 1 Gbps link.

AGE 25 % WATERLOO

Periormance Measurement

/l\t.m ork himit

_ 100+

S ' e
2 / =

5 ' / /,1

3 50+ //f Aggregate read rate
S _

4
I
//
|/

77—
0 5 10 15

Number of clients N

(a) Reads

AGE 25 % WATERLOO

Periormance Measurement

d Network limit
60 /
I
=
o) /
— -—H}— x'f:
3 .lllll =T
o S
5 / i
3 lf.'f _I.-'-';E'F#I
- / #___I--’*
= 201 / =
P | e Aggregate write rate
!
I:_}""|_""|""|_'
0 5 10 15

Number of clients N

(b) Writes

AGE 24 % WATERLOO

Periormance Measurement

10 - Network limit

b =
i :c’f 2

.
L
- a2

Aggregate append rate

Append rate (MB/s)

0 5 10 15

Number of clients N

(c) Record appends

AGE 25 % WATERLOO

Periormance Measurement

Cluster A B

Chunkservers 342 227

Available disk space 72 TB 180 TB
Used disk space bb TB 156 TB
Number of Files 735 k iar k
Number of Dead files 22 k 232 k
Number of Chunks 992 k| 1550 k
Metadata at chunkservers 13 GB 21 GB
Metadata at master 48 MB 60 MB

Table 2: Characteristics of two GFS clusters

AGE 26 %?’ WATERLOO

Periormance Measurement

Cluster A B

Read rate (last minute) 583 MB/s | 380 MB/s
Read rate (last hour) 562 MB/s | 384 MB/s
Read rate (since restart) 589 MB/s 49 MB/s
Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s
Master ops (last minute) 325 Ops/s | 533 Ops/s
Master ops (last hour) 381 Ops/s | 518 Ops/s
Master ops (since restart) 202 Ops/s | 347 Ops/s

Table 3: Performance Metrics for Two GFS Clusters

AGE 27 % WATERLOO

Periormance Measurement

Recovery Time

= Killed 1 chunkserver
= 15,000 chunks (600GB data)
= limited cloning operations to 40% chunkservers at 6.25 MBps
= restored within 23.2 minutes at replication rate 440MBps
= Killed 2 chunkservers
= 16,000 chunks (660 GB data) each
= 266 chunks had single replica

= restored to 2x replication in 2 minutes at high priority

AGE 26 % WATERLOO

Periormance Measurement

Operation Read Write Record Append
Cluster X X X ¥ X i
OK 0.4 2.6 0 0 0 0
IB..1K § 7 I i | 6.6 4.9 0.2 9.2
1K..8K 65.2 38.5 04 1.0 | 18.9 5.2
SK..64K 299 45.1 | 17.8 43.0 | 78.0 2.8
64K.. 128K 0.1 0.7 2a3 L9 | < .1 4.3
128K..256K 0.2 03 | 316 04 | < .1 10.6
256 K..512K 0.1 01 42 T.7 | =1 31.2
512K.. 1M 3.9 6.9 | 35.528.7 2.2 25.5
IM..inf 0.1 1.8 1.57182.3 0.7 2.2

Table 4: Operations Breakdown by Size (%)

AGE 26 %?’ WATERLOO

Periormance Measurement

Operation Read Write Record Append
Cluster X ¥ X Y X Y
1B:1K <l ol | L A€ 1| £l i |
1K..8K 138 39 | €. l1< 1| .1 0.1
SK..64K 11.4 9.3 24 5.9 23 0.3
64K.. 128K s 0.7 0.3 0.3 | 227 1.2
128K..256K 0.8 06| 165 0.2 | < .1 5.8
256K..512K 14 0.3 4 T7 | <1 38.4
512K.. 1M 65.9 55.1 | 74.1 58.0 1 46.8
IM..inf 6.4 30.1 3.3 28.0 | 53.9 7.4

Table 5: Bytes Transferred Breakdown by Opera-
tion Size (%)

AGE 30 %?’ WATERLOO

-
Periormance Measurement

Cluster N ¥
Open 26.1 16.3
Delete 0.7 1.5
FindLocation 64.3 65.8
FindLeaseHolder 7.5 15.4
FindMatchingFiles 0.6 2.2
All other combined 0.5 0.8

Table 6: Master Requests Breakdown by Type (%)

AGE 31 %?’ WATERLOO

Benefits

Centralized master server

= simplified design - less complexity, greater flexibility

= well-informed chunk placement and replication decisions

= Fault tolerance
= master state small and fully replicated
= Scalability, high availability
= use of shadow masters
= Tackle processing needs with existing cheap hardware
= High throughput
= separation of control and data flow

= Allows for concurrent appends

AGE 3 % WATERLOO

= Applications have to deal with duplicates in the chunks
(result of record appends)

= Problem delivering aggregate performance to a large number
of clients

= System size limited by master server’s main memory
capacity

= File sizes < 64MB

AGE 33 % WATERLOO

Worked fine 15 years ago.

What about now?

AGE 34 % WATERLOO

